Building a Pi Kubernetes Cluster – Part 3 – Worker Nodes and MetalLB

Building a Raspberry Pi Kubernetes Cluster - part 3 - worker nodes featured image

This is the third post in this series and the focus will be on completing the Raspberry Pi Kubernetes cluster by adding a worker node. You’ll also setup a software based load-balancer implementation designed for bare metal Kubernetes Clusters by leveraging MetalLB.

Here are some handy links to other parts in this blog post series:

By now you should have 1 x Pi running as the dedicated Pi network router, DHCP, DNS and jumpbox, as well as 1 x Pi running as the cluster Master Node.

Of course it’s always best to have more than 1 x Master node, but as this is just an experimental/fun setup, one is just fine. The same applies to the Worker nodes, although in my case I added two workers with each Pi 4 having 4GB RAM.

Joining a Worker Node to the Cluster

Start off by completing the setup steps as per the Common Setup section in Part 2 with your new Pi.

Once your new Worker Pi is ready and on the network with it’s own static DHCP lease, join it to the cluster (currently only the Master Node) by using the kubeadm join command you noted down when you first initialised your cluster in Part 2.

E.g.

sudo kubeadm join 10.0.0.50:6443 --token kjx8lp.wfr7n4ie33r7dqx2 \
     --discovery-token-ca-cert-hash sha256:25a997a1b37fb34ed70ff4889ced6b91aefbee6fb18e1a32f8b4c8240db01ec3

After a few moments, SSH back to your master node and run kubectl get nodes. You should see the new worker node added and after it pulls down and starts the weave net CNI image it’s status will change to Ready.

kubernetes worker node added to cluster

Setting up MetalLB

The problem with a ‘bare metal’ Kubernetes cluster (or any self-installed, manually configured k8s cluster for that matter) is that it doesn’t have any load-balancer implementation to handle LoadBalancer service types.

When you run Kubernetes on top of a cloud hosting platform like AWS or Azure, they are backed natively by load-balancer implementations that work seamlessly with those cloud platform’s load-balancer services. E.g. classic application or elastic load balancers with AWS.

However, with a Raspberry Pi cluster, you don’t have anything fancy like that to provide LoadBalancer services for your applications you run.

MetalLB provides a software based implementation that can work on a Pi cluster.

Install version 0.8.3 of MetalLB by applying the following manifest with kubectl:

kubectl apply -f https://gist.githubusercontent.com/Shogan/d418190a950a1d6788f9b168216f6fe1/raw/ca4418c7167a64c77511ba44b2c7736b56bdad48/metallb.yaml

Make sure the MetalLB pods are now up and running in the metallb-system namespace that was created.

metallb pods running

Now you will create a ConfigMap that will contain the settings your MetalLB setup will use for the cluster load-balancer services.

Create a file called metallb-config.yaml with the following content:

apiVersion: v1
kind: ConfigMap
metadata:
  namespace: metallb-system
  name: config
data:
  config: |
    address-pools:
    - name: default
      protocol: layer2
      addresses:
      - 10.23.220.88-10.23.220.98

Update the addresses section to use whichever range of IP addresses you would like to assign for use with MetalLB. Note, I only used 10 addresses as below for mine.

Apply the configuration:

kubectl apply -f ./metallb-config.yaml

Setup Helm in the Pi Cluster

First of all you’ll need an ARM compatible version of Helm. Download it and move it to a directory that is in your system PATH. I’m using my Kubernetes master node as a convenient location to use kubectl and helm commands from, so I did this on my master node.

Install Helm Client

export HELM_VERSION=v2.9.1
wget https://kubernetes-helm.storage.googleapis.com/helm-$HELM_VERSION-linux-arm.tar.gz
tar xvzf helm-$HELM_VERSION-linux-arm.tar.gz
sudo mv linux-arm/helm /usr/bin/helm

Install Helm Tiller in the Cluster

Use the following command to initialise the tiller component in your Pi cluster.

helm init --tiller-image=jessestuart/tiller --service-account tiller --override spec.selector.matchLabels.'name'='tiller',spec.selector.matchLabels.'app'='helm' --output yaml | sed 's@apiVersion: extensions/v1beta1@apiVersion: apps/v1@' | kubectl apply -f -

Note: it uses a custom image from jessestuart/tiller (as this is ARM compatible). The command also replaces the older api spec for the deployment with the apps/v1 version, as the older beta one is no longer applicable with Kubernetes 1.16.

Deploy an Ingress Controller with Helm

Now that you have something to fulfill LoadBalancer service types (MetalLB), and you have Helm configured, you can deploy an NGINX Ingress Controller with a LoadBalancer service type for your Pi cluster.

helm install --name nginx-ingress stable/nginx-ingress --set rbac.create=true --set controller.service.type=LoadBalancer

If you list out your new ingress controller pods though you might find a problem with them running. They’ll likely be trying to use x86 architecture images instead of ARM. I manually patched my NGINX Ingress Controller deployment to point it at an ARM compatible docker image.

kubectl set image deployment/nginx-ingress-controller     nginx-ingress-controller=quay.io/kubernetes-ingress-controller/nginx-ingress-controller-arm:0.26.1

After a few moments the new pods should now show as running:

new nginx ingress pods running with ARM image

Now to test everything, you can grab the external IP that should have been assigned to your NGINX ingress controller LoadBalancer service and test the default NGINX backend HTTP endpoint that returns a simple 404 message.

List the service and get the EXTERNAL-IP (this should sit in the range you configured MetalLB with):

kubectl get service --selector=app=nginx-ingress

Curl the NGINX Ingress Controller LoadBalancer service endpoint with a simple GET request:

curl -i http://10.23.220.88

You’ll see the default 404 not found response which indicates that the controller did indeed receive your request from the LoadBalancer service and directed it appropriately down to the default backend pod.

the nginx default backend 404 response

Concluding

At this point you’ve configured:

  • A Raspberry Pi Kubernetes network Router / DHCP / DNS server / jumpbox
  • Kubernetes master node running the master components for the cluster
  • Kubernetes worker nodes
  • MetalLB load-balancer implementation for your cluster
  • Helm client and Tiller agent for ARM in your cluster
  • NGINX ingress controller

In part 1, recall you setup some iptables rules on the Router Pi as an optional step?

These PREROUTING AND POSTROUTING rules were to forward packets destined for the Router Pi’s external IP address to be forwarded to a specific IP address in the Kubernetes network. In actual fact, the example I provided was what I used to forward traffic from the Pi router all the way to my NGINX Ingress Controller load balancer service.

Revisit this section if you’d like to achieve something similar (access services inside your cluster from outside the network), and replace the 10.23.220.88 IP address in the example I provided with the IP address of your own ingress controller service backed by MetalLB in your cluster.

Also remember that at this point you can add as many worker nodes to the cluster as you like using the kubeadm join command used earlier.

Building a Raspberry Pi Kubernetes Cluster – Part 2 – Master Node

Building a Raspberry Pi Kubernetes Cluster - part 2 - master node title featured image

The Kubernetes Master node is one that runs what are known as the master processes: The kube-apiserver, kube-controller-manager and kube-scheduler.

In this post we’ll go through some common setup that all nodes (masters and workers) in your cluster should get, and then on top of that, the specific setup that will finally configure a single node in the cluster to be the master.

If you would like to jump to the other partes in this series, here are the links:

By now you should have some sort of stack or collection of Raspberry Pis going. As mentioned in the previous post, I used a Raspberry Pi 3 for my router/dhcp server for the Kubernetes Pi Cluster network, and Raspberry Pi 4’s with 4GB RAM each for the master and worker nodes. Here is how my stack looks now:

picture of raspberry pi devices in stack, forming the kubernetes cluster
The stack of Rasperry Pi’s in my cluster. Router Pi at the bottom, master and future worker nodes above. They’re sitting on top of the USB power hub and 8 port gigabit network switch

Common Setup

This setup will be used for both masters and workers in the cluster.

Start by writing the official Raspbian Buster Lite image to your microSD card. (I used the 26th September 2019 version), though as you’ll see next I also updated the Pi’s firmware and OS using the rpi-update command.

After attaching your Pi (master) to the network switch, it should pick up an IP address from the DHCP server you setup in part 1.

SSH into the Pi and complete the basic setup such as setting a hostname and ensuring it gets a static IP address lease from DHCP by editing your dnsmasq configuration (as per part 1).

Note: As the new Pi is running on a different network behind your Pi Router, you can either SSH into your Pi Router (like a bastion host or jump box) and then SSH into the new Master Pi node from there.

Now update it:

sudo rpi-update

After the update completes, reboot the Pi.

sudo reboot now

SSH back into the Pi, then download and install Docker. I used version 19.03 here, though at the moment it is not ‘officially’ supported.

export VERSION=19.03
curl -sSL get.docker.com | sh && sudo usermod pi -aG docker && newgrp docker

Kubernetes nodes should have swap disabled, so do that next. Additionally, you’ll enable control groups (cgroups) for resource isolation.

sudo dphys-swapfile swapoff
sudo dphys-swapfile uninstall
sudo update-rc.d dphys-swapfile remove
sudo systemctl disable dphys-swapfile.service

sudo sed -i -e 's/$/ cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory/' /boot/cmdline.txt

Installing kubeadm and other Kubernetes components

Next you’ll install the kubeadm tool (helps us create our cluster quickly), as well as a bunch of other components required, such as the kubelet (the main node agent that registers nodes with the API server among other things), kubectl and the kubernetes cni (to provision container networking).

Next up, install the legacy iptables package and setup networking so that it traverses future iptables rules.

Note: when I built my cluster initially I discovered problems with iptables later on, where the kube-proxy and kubelet services had trouble populating all their required iptables rules using the pre-installed version of iptables. Switching to legacy iptables fixed this.

The error I ran into (hopefully those searching it will come across this post too) was:

proxier.go:1423] Failed to execute iptables-restore: exit status 2 (iptables-restore v1.6.0: Couldn't load target `KUBE-MARK-DROP':No such file or directory

Setup iptables and change it to the legacy version:

sudo sysctl net.bridge.bridge-nf-call-iptables=1
sudo update-alternatives --set iptables /usr/sbin/iptables-legacy

Lastly to finish off the common (master or worker) node setup, reboot.

sudo reboot now

Master Node Setup

Now you can configure this Pi as a master Kubernetes node. SSH back in after the reboot and pull down the various node component docker images, then initialise it.

Important: Make sure you change the 10.0.0.50 IP address in the below code snippet to match whatever IP address you reserved for this master node in your dnsmasq leases configuration. This is the IP address that the master API server will advertise out with.

Note: In my setup I am using 192.168.0.0./16 as the pod CIDR (overlay network). This is specifically to keep it separate from my internal Pi network of 10.0.0.0/8.

sudo kubeadm config images pull -v3
sudo kubeadm init --token-ttl=0 --apiserver-advertise-address=10.0.0.50 --pod-network-cidr=192.168.0.0/16

# capture text and run as normal user. e.g.:
# mkdir -p $HOME/.kube
# sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
# sudo chown $(id -u):$(id -g) $HOME/.kube/config

Once the kubeadm commands complete, the init command will output a bunch of commands to run. Copy and enter them afterwards to setup the kubectl configuration under $HOME/.kube/config.

You’ll also see a kubeadm join command/token. Take note of that and keep it safe. You’ll use this to join other workers to the cluster later on.

kubeadm join 10.0.0.50:6443 --token yi4hzn.glushkg39orzx0fk \
    --discovery-token-ca-cert-hash sha256:xyz0721e03e1585f86e46e477de0bdf32f59e0a6083f0e16871ababc123

Installing the CNI (Weave)

You’ll setup Weave Net next. At a high level, Weave Net creates a virtual container network that connects your containers that are scheduled across (potentially) many different hosts and enables their automatic discovery across these hosts too.

Kubernetes has a pluggable architecture for container networking, and Weave Net is one implementation of this.

Note: the command below assumes you’re using an overlay/container network of 192.168.0.0/16. Change this if you’re not using this range.

On your Pi master node:

curl --location -o ./weave-cni.yaml "https://cloud.weave.works/k8s/net?k8s-version=$(kubectl version | base64 | tr -d '\n')&env.IPALLOC_RANGE=192.168.0.0/16"
kubectl apply -f ./weave-cni.yaml

After a few moments waiting for your node to pull down the weave net container images, check that the weave container(s) are running and that the master node is showing as ready. Here is how that should look…

kubectl -n kube-system get pods
kubectl get nodes
pi@korben:~ $ kubectl -n kube-system get pods | grep weave
weave-net-cfxhr                  2/2     Running   20         10d
weave-net-chlgh                  2/2     Running   17         23d
weave-net-rxlg8                  2/2     Running   13         23d

pi@korben:~ $ kubectl get nodes
NAME     STATUS   ROLES    AGE   VERSION
korben   Ready    master   23d   v1.16.2

That is pretty much it for the master node setup. You now have a single master node running the Kubernetes master components / API server, and have even used to successfully provision and configure container networking.

As a result of deploying Weave Net, you now have a DaemonSet that will ensure that any new node that joins the cluster will automatically get the Weave Net CNI. All other nodes in the cluster will automatically update to ‘know’ about the new node and subsequently containers in the cluster will be able to talk to each other over the overlay network.