Raspberry Pi Kubernetes Cluster with OpenFaaS for Serverless Functions (Part 4)

Getting Started with OpenFaaS

This is the fourth post in this series. The focus will be on getting OpenFaaS set up on your Raspberry Pi Kubernetes cluster nice and quickly.

Here are some links to previous posts in this series:

OpenFaaS is an open source project that provides a scalable platform to easily deploy event-driven functions and microservices.

It has great support to run on ARM hardware, which makes it an excellent fit for the Raspberry Pi. It’s worth mentioning that it is of course designed to run across a multitude of different platforms other than the Pi.

Getting Started

You’ll work with a couple of different CLI tools that I chose for the speed at which they can get you up and running:

  • faas-cli – the main CLI for OpenFaaS
  • arkade – a golang based CLI tool for quick and easy one liner installs for various apps / software for Kubernetes

There are other options like Helm or standard YAML files for Kubernetes that you could also use. Find more information about these here.

I have a general purpose admin and routing dedicated Pi in my Raspberry Pi stack that I use for doing admin tasks in my cluster. This made for a great bastion host that I could use to run the following commands:

Install arkade

# Important! Before running these scripts, always inspect the remote content first, especially as they're piped into sh with 'sudo'

# MacOS or Linux
curl -SLsf https://dl.get-arkade.dev/ | sudo sh

# Windows using Bash (e.g. WSL or Git Bash)
curl -SLsf https://dl.get-arkade.dev/ | sh

Install faas-cli

# Important! Before running these scripts, always inspect the remote content first, especially as they're piped into sh with 'sudo'

# MacOS
brew install faas-cli

# Using curl
curl -sL https://cli.openfaas.com | sudo sh

Deploying OpenFaaS

Using arkade, deploy OpenFaaS with:

arkade install openfaas

If you followed my previous articles in this series to set your cluster up, then you’ll have a LoadBalancer service type available via MetalLB. However, in my case (with the above command), I did not deploy a LoadBalancer service, as I already use a single Ingress Controller for external traffic coming into my cluster.

The assumption is that you have an Ingress Controller setup for the remainder of the steps. However, you can get by without one, accessing OpenFaaS by the external gateway NodePortservice instead.

The arkade install will output a command to get your password. By default OpenFaaS comes with Basic Authentication. You’ll fetch the admin password you can use to access the system with Basic Auth next.

Grab the generated admin password and login with faas-cli:

PASSWORD=$(kubectl get secret -n openfaas basic-auth -o jsonpath="{.data.basic-auth-password}" | base64 --decode; echo)
echo -n $PASSWORD | faas-cli login --username admin --password-stdin

OpenFaaS Gateway Ingress

OpenFaaS will have deployed with two Gateway services in the openfaas namespace.

  • gateway (ClusterIP)
  • gateway-external (NodePort)

Instead of relying on the NodePort service, I chose to create an Ingress Rule to send traffic from my cluster’s Ingress Controller to OpenFaaS’ ClusterIP service (gateway).

You’ll want SSL so setup a K8s secret to hold your certificate details for the hostname you choose for your Ingress Rule. Here is a template you can use for your OpenFaaS ingress:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  annotations:
    kubernetes.io/ingress.class: nginx
    nginx.ingress.kubernetes.io/rewrite-target: /
  name: openfaas
spec:
  rules:
  - host: openfaas.foo.bar
    http:
      paths:
      - backend:
          serviceName: gateway
          servicePort: 8080
        path: /
  tls:
  - hosts:
    - openfaas.foo.bar
    secretName: openfaas.foo.bar

Create your TLS K8s secret in the openfaas namespace, and then deploy the ingress rule with:

kubectl -n openfaas apply -f ./the_above_ingress_rule.yml

You should now be able to access the OpenFaaS UI with something like https://openfaas.foo.bar/ui/

The OpenFaas Web UI

Creating your own Functions

Life is far more fun on the CLI, so get started with some basics with first:

  • faas-cli store list --platform armhf – show some basic functions available for armhf (Pi)
  • faas-cli store deploy figlet --platform armhf – deploy the figlet function that converts text to ASCII representations of that text
  • echo "hai" | faas-cli invoke figlet – pipe the text ‘hai’ into the faas-cli invoke command to invoke the figlet function and get it to generate the equivalent in ASCII text.

Now, create your own function using one of the many templates available. You’ll be using the incubator template for python3 HTTP. This includes a newer function watchdog (more about that below), which gives more control over the HTTP / event lifecycle in your functions.

Grab the python3 HTTP template for armhf and create a new function with it:

# Grab incubator templates for Python, including Python HTTP. Will figure out it needs the armhf ones based on your architecture!

faas template pull https://github.com/openfaas-incubator/python-flask-template
faas-cli new --lang python3-http-armhf your-function-name-here
Success – a new, python3 HTTP function ready to go

A basic file structure gets scaffolded out. It contains a YAML file with configuration about your function. E.g.

version: 1.0
provider:
  name: openfaas
  gateway: http://127.0.0.1:8080
functions:
  your-function-name-here:
    lang: python3-http-armhf
    handler: ./your-function-name-here
    image: your-function-name-here:latest

The YAML informs building and deploying of your function.

A folder with your function handler code is also created alongside the YAML. For python it contains handler.py and requirements.txt (for python library requirements)

def handle(event, context):
    # TODO implement
    return {
        "statusCode": 200,
        "body": "Hello from OpenFaaS!"
    }

As you used the newer function templates with the latest OF Watchdog, you get full access to the event and context in your handler without any extra work. Nice!

Build and Deploy your Custom Function

Run the faas up command to build and publish your function. This will do a docker build / tag / push to a registry of your choice and then deploy the function to OpenFaaS. Update your your-function-name-here.yml file to specify your desired docker registry/repo/tag, and OpenFaas gateway address first though.

faas up -f your-function-name-here.yml

Now you’re good to go. Execute your function by doing a GET request to the function URL, using faas invoke, or by using the OpenFaaS UI!

Creating your own OpenFaaS Docker images

You can convert most Docker images to run on OpenFaaS by adding the function watchdog to your image. This is a very small HTTP server written in Golang.

It becomes the entrypoint which forwards HTTP requests to your target process via STDIN or HTTP. The response goes back to the requester by STDOUT or HTTP.

Read and find out more at these URLs:

Hopefully this gave you a good base to get started with OpenFaaS. We covered everything from deployment and configuration, to creating your own custom functions and images. Have fun experimenting!

Multipurpose FreeNAS Server Build

multipurpose freenas server build

There is something magical about building your own infrastructure from scratch. And when I say scratch, I mean using bare metal. This is a run through of my multipurpose FreeNAS server build process.

After scratching the itch recently with my Raspberry Pi Kubernetes Cluster, I got a hankering to do it again, and this build was soon in the works.

Part of my motivation came from my desire to reduce our reliance on cloud technology at home. Don’t get me wrong, I am an advocate for using the cloud where it makes sense. My day job revolves around designing and managing various clients’ cloud infrastructure.

At home, this was more about taking control of our own data.

I’ll skip to the juicy specifications part if you would like to know what hardware I used right away.

The intial hardware
Note: I got this Gigabyte B450 motherboard, but soon found out it did not support ECC.

Final specifications:

These are the final specifications I decided on. Scroll down to see the details about each area.

The Goals

The final home server build would need to meet many requirements:

  • It should provide a resilient, large shared storage pool for network file storage across multiple Windows PCs at home.
  • Support NFS storage for sharing persistent volumes to my Raspberry Pi Kubernetes Cluster.
  • It should be able to run Plex for home and remote media streaming.
  • It must be able to run Nextcloud for home and remote mobile file storage.
  • Run services in Virtual Machines, Jails, or Docker containers. For example, I like to run Pi-hole as a DNS server for all my home equipment and devices.

The Decision Process

I started out my search looking at two products. Unraid and FreeNAS.

I have had experience running FreeNAS in the past for home lab setups. I never really used it seriously with the goal of making it reliable though.

This time around, all my files would be at stake, so I did a fair bit of research into the features and offerings of both products.

Unraid performed quite well for me. But, what pushed me away from it was the fact that it is a paid for, closed source, commercial product.

Unraid does make it super easy to bundle storage together and expand that storage in future if need be. However FreeNAS’ use of ZFS and it’s various other features were what won me over.

The Build Details

Having settled on FreeNAS, I went about researching which hardware I would need. My goal here was to not spend too much money, but at the same time not cheap out and compromise on reliability.

CPU, Motherboard, RAM

ECC (Error Checking and Correction) RAM is very important for ZFS, so this is basically what my build hinged on.

I found that AMD Ryzen CPUs support ECC, and so do most Ryzen compatible motherboards.

Importantly, in my research I found that Ryzen APU CPUs do not support ECC. Make sure you do not get an APU if ECC is important to you.

Additionally, many others report much better stability running FreeNAS on AMD Ryzen Generation 2 chips and above. With this in mind, I decided I would use at least an AMD Ryzen 2xxx CPU.

On the ECC topic, I only found evidence of single bit error correction working on AMD Ryzen systems.

I also made an initial mistake here in my build buying a Gigabyte B450M DS3H motherboard. The product specs seem to indicate that it supports ECC, and so did a review I found on Anandtech. In reality the Gigabyte board does not support the ECC feature. Rather it ‘supports’ ECC memory by allowing the system to boot with ECC RAM installed, but you don’t get the actual error checking and correction!

I figured this out after booting it up with Fedora Rawhide as well as a couple of uBuntu Server distributions and running the edac-utils package. In all cases edac-utils failed to find ECC support / or any memory controller.

checking ECC support with edac-utils
Checking ECC support with edac-utils

The Asus board I settled on supports ECC and edac-utils confirmed this.

The motherboard also has an excellent EFI BIOS. I found it easy to get to the ECC and Virtualization settings.

the Asus Prime X470-Pro EFI BIOS

Storage

I used 4 x Western Digital 3TB Red hard drives for the RAIDZ1 main storage pool.

Western Digital 3TB Red hard drives

The SSD storage pool consists of 2 x Crucial MX500 250GB SSD SATA drives in a mirror configuration. This configuration is for running Virtual Machines and the NFS storage for my Kubernetes cluster.

Graphics Card

The crossing out of APUs also meant I would need a discrete graphic card for console / direct access, and to install the OS initially. I settled on a cheap PCI Express Graphics card off Ebay for this.

A cheap AMD Radeon HD 6450 1GB DVI DisplayPort PCI-Express Graphics Card I used for the FreeNAS build.

Having chosen a beefy six core Ryzen 2600 CPU, I decided I didn’t need to get a fancy graphics card for live media encoding. (Plex does much better with this). If media encoding speed and efficiency is important to you, then consider something like an nVIDIA or AMD card.

For me, the six core CPU does a fine job at encoding media for home and remote streaming over Plex.

Network

I wanted to use this system to server file storage for my home PCs and equipment. Besides this, I also wanted to export and share storage to my Raspberry Pi Kubernetes cluster, which runs on it’s own, dedicated network.

The simple solution for me here was multihoming the server onto the two networks. So I would need two network interface cards, with at least 1Gbit/s capability.

The motherboard already has an Intel NIC onboard, so I added two more ports with an Intel Pro Dual Port Gigabit PCI Express x4 card.

Intel dual port NIC

Configuration Highlights

I’ll detail the highlights of my configuration for each service the multipurpose FreeNAS Server build hosts.

Main System Setup

The boot device is the 120GB M.2 nVME SSD. I installed FreeNAS 11.3 using a bootable USB drive.

FreeNAS Configuration

I created two Storage Pools. Both are encrypted. Besides the obvious protection encryption provides, this also makes it easier to recycle drives later on if I need to.

FreeNAS storage pool configuration
  • Storage Pool 1
    • 4 x Western Digital Red 3TB drives, configured with RAIDZ1. (1 disk’s worth of storage is effectively lost for parity, giving roughly 8-9 TB of usable space).
    • Deduplication turned off
    • Compression enabled
  • Storage Pool 2
    • 2 x Crucial MX500 250GB SSD drives, configured in a Mirror (1 disk mirrors the other, providing a backup if one fails).
    • Deduplication turned off
    • Compression enabled

The network is set to use the onboard NIC to connect to my main home LAN. One of the ports on the Intel dual port NIC connects to my Raspberry Pi Kubernetes Cluster network and assigned a static IP address on that network.

Windows Shares

My home network’s storage shares are simple Windows SMB Shares.

I created a dedicated user in FreeNAS which I configured in the SMB share configuration ACLs to give access.

Windows machines then simply mount the network location / path as mapped drives.

I also enabled Shadow Copies. FreeNAS supports this to enable Windows to use Shadow Copies.

FreeNAS Windows SMB share

Pi-hole Configuration

I setup a dedicated uBuntu Server 18.04 LTS Virtual Machine using FreeNAS’ built-in VM support (bhyve). Before doing this, I enabled virtualization support in the motherboard BIOS settings. (SVM Mode = Enabled).

I used the standard installation method for Pi-Hole. I made sure the VM was using a static IP address and was bridged to my home network. Then I reconfigured my home DHCP server to dish out the Pi-hole’s IP address as the primary DNS server to all clients.

For the DNS upstream servers that Pi-hole uses, I chose to use the Quad9 (filtered, DNSSEC) ones, and enabled DNSSEC.

pi-hole upstream DNS configuration with DNSSEC

NextCloud

NextCloud has a readily available plugin for FreeNAS. However, out of the box you get no SSL. You’ll need to setup your networking at home to allow remote access. Additionally, you’ll need to get an SSL certificate. I used Let’s Encrypt.

I detailed my full process in this blog post.

Plex

Plex was a simple setup. Simply install the Plex FreeNAS plugin from the main Plugins page and follow the wizard. It will install and configure a jail to run Plex.

To mount your media, you need to stop the Plex jail and edit it to add your media location on your storage. Here is an example of my mount point. It basically mounts the media directory I use to keep all my media into the Plex Jail’s filesystem.

Plex jail mount point

NFS Storage for Kubernetes

Lastly, I setup an NFS share / export for my Raspberry Pi Kubernetes Cluster to use for Persistent Volumes to attach to pods.

NFS shares for Kubernetes in FreeNAS

The key points here were that I allowed the two network ranges I wanted to have access to this storage from. (10.0.0.0/8 is my Kubernetes cluster network). I also configured a Mapall user of ‘root’, which allows the storage to be writeable when mounted by pods/containers in Kubernetes. (Or any other clients that mount this storage).

I was happy with this level of access for this particular NFS storage share from these two networks.

Next, I installed the NFS External-storage provisioner for Kubernetes on my Pi Cluster. I needed to use the ARM specific deployment manifest as Pi’s of course have ARM CPUs.

I modified the deployment manifest to point it to my FreeNAS machine’s IP address and NFS share path.

The kubernetes nfs client provisioner manifest configured for NFS storage provisioning.

With that done, pods can now request persistent storage with a Persistent Volume Claim (PVC). The NFS client provisioner will create a directory for the pod (named after the pod itself) on the NFS mount and mount that to your pod.

Final Thoughts

So far the multipurpose FreeNAS server build has been very stable. It has been happily serving our home media streaming, storage, and shared storage needs.

It’s also providing persistent storage for my Kubernetes lab environment which is great, as I prefer not to use the not-so-durable microSD cards on the Raspberry Pi’s themselves for storage.

The disk configuration size seems fine for our needs. At the moment we’re only using ~20% of the total storage, so there is plenty of room to grow.

I’m also happy with the ability to run custom VMs or Jails for additional services, though I might need to add another 16GB of ECC RAM in the future to support more as ZFS does well with plenty of memory.

Install and configure Nextcloud plugin on FreeNAS with SSL

Install and configure Nextcloud plugin on FreeNAS with SSL

The FreeNAS Nextcloud plugin installation works great with automatic configuration thanks to a recent pull request. But, you don’t get SSL enabled by default. This is critical, especially for a system exposed to the internet.

In this post you’ll see how to:

  • Install the Nextcloud plugin in a FreeNAS BSD jail
  • Add an extra NAT port for SSL to the jail
  • Configure NGINX inside the jail by adding a customised configuration with SSL enabled
  • Apply a free SSL certificate using Lets Encrypt and DNS-01 challenge validation
  • Look at some options for setting up home networking for public access

Start off by Installing the Nextcloud Plugin in a jail. Choose NAT for networking mode. It defaults to port 8282:80 (http).

the Nextcloud jail in the FreeNAS UI

Stop the jail once it’s running and edit it. Add another NAT rule to point 8443 to 443 for SSL.

the extra port 8443 - 443 NAT rule to add

The reason for selecting port 8443 for Nextcloud is because the FreeNAS web UI listens on port 443 for SSL too.

An alternative could be to use DHCP instead of NAT for the jail. I chose NAT for my setup as I prefer using one internal IP address for everything I run on the FreeNAS server.

Shell into the Nextcloud jail, and rename the default nginx configuration.

mv /usr/local/etc/nginx/conf.d/nextcloud.conf /usr/local/etc/nginx/conf.d/nextcloud.conf.old

NGINX will load all .conf files in this directory. Hence the reason you’ll create a new configuration for your SSL setup here.

ee /usr/local/etc/nginx/conf.d/nextcloud-ssl.conf

Populate it with the contents of the gist below, but replace server_name, ssl_certificate, and ssl_certificate_key with your own hostname.

Generate a free SSL certificate with Lets Encrypt

To configure the Nextcloud plugin on FreeNAS with SSL you don’t need to break the bank on SSL certificate costs from traditional CAs. Lets Encrypt it free, but you’ll need to renew your certificate every three months.

DNS-01 challenge certificate generation for Lets Encrypt is a great way to get SSL certificates without a public web server.

It entails creating a TXT/SPF record on the domain you own, with a value set to a code that certbot gives you during the certbot request process.

Install certbot if you don’t already have it installed. On a debian based system:

sudo apt-get install certbot

Request a certificate for your desired hostname using certbot with dns as the preferred challenge.

sudo certbot -d yournextcloud.example.net --manual --preferred-challenges dns certonly

Follow the prompts until you receive a code to setup your own TXT record with. Go to your DNS provider control panel and create it with the code you’re given as the value.

After creating the record, finish the certificate request. Lets Encrypt will confirm the DNS TXT record and issue you a certificate. You’ll get a chain file called fullchain.pem, along with a private key file called privkey.pem.

Upload the SSL certificate files to Nextcloud

Upload both to your Nextcloud Jail. Use SCP to copy them up, renaming them as follows:

  • /etc/ssl/nginx/yournextcloud.example.net.crt (certificate chain file)
  • /etc/ssl/nginx/yournextcloud.example.net.key (private key file)

Rename them as per your chosen hostname to keep things organised, and so that they match your nextcloud-ssl.conf file entries.

Port forwarding / NAT setup

This is the part that comes down to your own network setup. I use a double NAT setup, so I NAT traffic from my external router interface, through to another internal router.

From my internal router, I port forward / NAT from the internal router interface through to my FreeNAS box on port 8443.

From there, the Nextcloud jail does NAT to take the TCP traffic from 8443 to 443 inside the jail (where NGINX is listening on 443).

This is how my NAT and port forwarding chain looks:

Public_IP:29123 (WAN interface) -> Internal_IP:29123 (Internal router LAN interface) -> Internal_IP:8443 (FreeNAS LAN interface) -> Internal_IP:443 (Nextcloud Jail)

If you’re lucky enough to have a static IP address then you can point your DNS host record to your static IP. Otherwise you’ll neee to use some form of dynamic DNS service.

At this point you should have everything in place.

Final steps

Using a shell in the Nextcloud jail, restart nginx with service nginx restart. If all goes well you’ll see nginx started in the output of that command.

If not, you’re likely to have an NGINX configuration syntax error.

The logs are usually good about pinpointing these, so read them to see where you might have missed something obvious in the nextcloud-ssl.conf file. Adjust any errors and restart again.

The default credentials that for Nextcloud are in the home directory of the jail (/root). To retrieve them:

cat /root/ncuser
cat /root/ncpassword

Test logging in, and get started with personalising your Nextcloud system and adding some users.

Now you can enjoy the Nextcloud plugin on FreeNAS with SSL enabled.

Running an S3 API compatible object storage server (Minio) on the Raspberry Pi

I’ve recently become interested in hosting my own local S3 API compatible object storage server at home.

So tonight I set about setting up Minio.

Image result for minio

Minio is an object storage server that is S3 API compatible. This means I’ll be able to use my working knowledge of the Amazon S3 API and tools, but to interact with my own, locally hosted storage service running on a Raspberry Pi.

I had heard about Zenko before (an S3 API compatible object storage server) but was searching around for something really lightweight that I could easily run on ARM architecture – i.e. my Raspberry Pi model 3 I have sitting on my desk right now. In doing so, Minio was the first that I found that could easily be compiled to run on the Raspberry Pi.

The goal right now is to have a local object storage service that is compatible with S3 APIs that I can use for home use. This has a bunch of cool use cases, and the ones I am specifically interested in right now are:

  • Being able to write scripts that interact with S3, but test them locally with Minio before even having to think about deploying them to the cloud. A local object storage API is going to be free and fast. Plus it’s great knowing that you’re fully in control of your own data.
  • Setting up a publically exposable object storage service that I can target with serverless functions that I plan to be running on demand in the cloud to do processing and then output artifacts to my home object storage service.

The second use case above is what I intend on doing to send ffmpeg processed video to. Basically I want to be able to process video from online services using something like AWS Lambda (probably using ffmpeg bundled in with the function) and output the resulting files to my home storage system.

The object storage service will receive these output files from Lambda and I’ll have a cronjob or rsync setup to then sync the objects placed into my storage bucket(s) to my home Plex media share.

This means I’ll be able to remotely queue up stuff to watch via a simple interface I’ll expose (or a message queue of some sort) to be processed by Lambda, and by the time I’m home everything will be ready to watch in Plex.

Normally I would be more interesting in running the Docker image for Minio, but at home I want something that is really cheap to run, and so compiling Minio for Raspberry Pi makes total sense to me here, as this device is super cheap to level powered on 24/7 as opposed to running something beefier that would instead run as a Docker host or lightweight Kubernetes home cluster.

Here’s the quick start up guide to get it running on Raspberry Pi

You’ll basically download Go, extract it, set it up on your path, then use it to compile Minio’s source code into an ARM compatible binary that you can run on your pi.

wget https://dl.google.com/go/go1.10.3.linux-armv6l.tar.gz
sudo tar -C /usr/local -xzf go1.10.3.linux-armv6l.tar.gz
export PATH=$PATH:/usr/local/go/bin # put into ~/.profile
source .profile
go get -u github.com/minio/minio
mkdir ~/minio-data
cd go/bin
./minio server ~/minio-data/

And you’re up and running! It’s that simple to get going quickly.

Running interactively you’ll get a default access and secret key in the terminal, so head on over to the Web UI / interface to check things out: http://your-raspberry-pi-ip-or-hostname:9000/minio/

Enter your credentials to login.

Of course at this stage you can also start using your S3 API compatible command line tools to start working with your new object storage server too.

Nice!

HP N54L Microserver now listed on HP website

I am a big fan of HP’s Microserver range. They make for excellent home lab hardware, and I currently have 2 x N40L models running a small vSphere 5.1 cluster for testing, blogging and study purposes.

 

It looks like HP have now officially listed their new Microserver range on their website – the N54L. The most notable change seems to be a much beefier CPU. The original N36Ls had a 1.3GHz AMD processor, with a slight improvement to 1.5GHz on the N40Ls. The CPU has always been the weak point for me, but has been enough for me to get by on. So the N54L models are now apparently packing 2.2GHz AMD Athlon NEO processors. This is a fairly big clock speed improvement over the N40L range and should make for some good improvements for those using these as bare metal hypervisor use.

The two models being listed at the moment are:

  • HP ProLiant G7 N54L 1P 2GB-U Non-hot Plug SATA 250GB 150W PS MicroServer
  • HP ProLiant G7 N54L 1P 4GB-U 150W PS MicroServer